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The problem of a sphere rolling on a horizontal plane was completely
solved by Chaplygin on the assumption that the center of gravity of the
sphere coincides with its geometric center, [ centroidl. As far as we
know, the problem of a nonhomogeneous sphere rolling on an inclined

plane, having a triaxial ellipsoid of inertia about the center of gravity
which coincides with the geometric center of the sphere, has not yet been
solved. We show in this paper that if certain restrictions are imposed on
the initial conditions, the equations of motion of a sphere on an inclined
plane can be reduced to equations whose form is identical with those in-
vestigated by Chaplygin.

With the inclined plane we associate a coordinate system Olflnlgl,
where the axis O 41 is directed normal to the plane and Olf1 is directed
along the line of steepest descent. We take the origin of the coordinate
system 0&n £, with axes parallel to 0161"141' at the geometric center
of the sphere.

Let Re, , R» be the components, along the axes 0&n ¢, of the re-
action ol the plane at the point of contact of the sphere, and let Kg,

, KC be the projections of the angular momentum of the sphere relative
to its center onto the same axes. We denote by v(vf, Uy 0) the velocity
of the center of the sphere and by w( g, O, OF ) its angular velocity.

Assuming that the center of gravity of the sphere coincides with 1its
geometric center, the general equations of dynamics are

dvE drn
m— =F+ Ry, m—p = 1Ha
dK, dK, dK, (1)
@ =PRn g =—pRy, =0

where m is the mass of the sphere, p is its radius, and F is the com-
ponent of gravity parallel to the plane.
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From (1) we obtain

dK dv dK dK
E n i E_  _
ar Mg p(m F)' 0

or
Ky —mpvy=n, K,+ mprg=pFt, Ky=h

We have set the constant of the sedond integral equal to zero. There
is no loss in generality since the time does not occur explicitly in the
corresponding differential equation.

We suppose that the sphere rolls without sliding and that therefore
the points of contact of the sphere with the plane have zero velocity.
Then

v—aXpk=20 (2)

where k is the unit vector along O¢. Projecting on the axes 0, we
obtain
Vg = pliy, Uy = — pg (3)
Hence
K¢+ mpoz=n, K,+ mplu,=pFt, Ky=h (4)

With the sphere we associate a fixed coordinate system Oxyz, with axes
having the same directions as the principal axes of the ellipsoid of
inertia at its center 0. We denote by L, M, N the principal moments of
inertia about the center, and the components of the angular velocity
along these axes by p, g, r. If the projections of the unit vectors along
the axes O£, On, O on the axes Oxyz are a, a’, a”, B, B, B, v, ¥v’,

o

y”, respectively, then

wg = pa + qa’ + ra”, K; = Lpan + Mqa' + Nra”,
@y = pB + gf’ + rf’, Ky=LpB+ MqB’ + Nrf’ ()
wg=py+97 +r1 Ky=Lpy+ Mgy + Nry”

From (5) we obtain

(Kg + mpex)® + (Kq + mp®oq)® + (K + mplex)® = n® 4 p*F** + (h + mp%(zg;

or, in terms of the axes Oxy:z,

(L + mp2yPp® + (M + mp?)? g* + (N + mp*)* r® =
=n®+ p’F** + [h + me® (py + 91" + r1")P (7)

Since the unit vector k(y, y’, y”) is invariant, taking (2) into
account, we have

dk
- toexk=0,  v=—p,- (8)
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and consequéntly the square of the velocity may be expressed as

v =p?(1* + 9" + 1") 9
Hence the energy integral can be written as
Lp*+ Mgt + Nt mgt (i + 77 + 1) = 2P + | (10)

where 1l is a constant of the vis viva which, without loss of generality,
can be made zero by the choice of the origin of the fixed coordinate
system on the inclined plane.

In addition, vg = d&l/dt and Uy = drpl/ dt. Hence, in view of (3) and

(5),
dg, _ ’ ” dm . ’ ”
S =e(PB+af +r3), 5 =—p(pa+ gx'+ra’) (11)
Equation (8) gives
d ’ » dy’ ” dy” ’
T=ry—gr, F=p"—r. F=ar—p1 (12)

From these equations and the third equation of (4), which by (5) can
be written as

Lpy+ Mgy' +~Nry" = h (13)
we find
p(Ly® 4+ My'"* + Ny"%) = hy 4+ Ny*{' — MY’y (14)
q(Ly® 4 My"* + Ny'%) = hy' + Lyi" — Nt
r(Ly? + Mx"? + Mx") = by" + My’ — L’

The second equation of (4) can be written as
(L + mg®) pB + (M + mp®) gB’ + (N + mp?) rp® = pFt

If the formulas By + By’ + B%”=0, B2 + B’2 + B” 2 = 1 (the re-
lations between the direction cosines relative to rectangular axes) are
adjoined to (c) and if these three expressions (2) are resolved relative
B, B°, B” , we obtain, in view of (7) and (13),

(n* +p*F2tY)B=n [(M + mp®) gy" — (N + mp?®) rq'] + (L + mp®) ppFt —
—pFt[h + mp*(pY + 91" + r1")
(n® + ?Fu?)p' =n [(N + mp®)ry — (L + mp®) pY"] + (M + mp®) gpFt —
— pFt[h + mp*(py + g7 + M"Y
(n® + p2F2%) B* = n[(L + mp®) py’ — (M + mo?) gx] + (N + mp®) roFt —
—pFt{h 4+ m®(py + 97" + ") Y"

(19)

Substituting (15) into the first equation of (11), we get
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"'"'P-—ﬂ%‘- =n{[(M + mp") g¢" — (N + mp*) ry’] p +

+ [N + mp®) rp — (L + mp®) p1"l g + (L + mp?) pY’ — (M + mp®) qx] 7} +
+ pFt [(L 4 mp®) p* + (M + mp?) ¢* + (N+ mp*) r’] —
— p*Ftm (py + g1’ + r")* — hoFt (py + g7’ + 77 (16)

The expression included in the braces can be written as
Lp(ry — gv") + Mg (px" — rY) + Nr{gr— pv') = Lpy + Mgy’ + Nry” (17)

The second and third terms on the right side of (16), in view of (10)
and the obvious relation

T+ 41" =1,
are transformed into
pFt{Lp* +M@* - Nr* + mp* [(p* + @ + ) (V" + 1 + 1) —
—(Pr+ o' + r1V1) = pFt{Lp* + Mq* + Nr* +
+mp* (7' — qv"'f + (p1" — 1) + (Y — PY)D) =
= pFt[Lp*+ Mq* + Nr* + mp? (1* + 1" + 1)) = 2pF %yt
Using (14), we find
PU+ v + 11 = o (M — N) 111 + (N — L)1y’ + (L — M) 117" +h] (18)
where
H = Ly* + M7{'* + Ny
Fquation (16) can be written in the form
O o = n (Lpy + My’ + Nrp') + 2pF %t —
— 7 0Fht (M — N) 11"y + (N — L)y'ey’ + (L— M)xy'?" +h]  (19)

Hence we have a closed system of equations (7), (10), (14), (17),
(19) which determine p, g, r, v, ¥, v, §,.

Eliminating p, q, r from (7) by means of (14), we get

MNq® + NLy® + .LM'\"." +h+
+ (Ly* + My'? + Nx"%) [mp? (1* + '* + ") — 2F§] =0 (20

For convenience in the further calculations we write the integral
(10) in the form

(L + mp®) p* + (M + mp?) * + (N + mp?) r* = 2F%, + ,
+mp? [(P+ @+ ) (P + 12+ D) — (1 — ") — (oY — 1) — (g1—P7'))

or
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(L + mp®) p* + (M + mp*) ¢* + (N + mp®) r* = 2F%, + mp* (py + q1' + r(')

Multiplying this expression by mpZ and subtracting from the integral
(7), we obtain

L(L +mp®) p* + M (M + mp*) g* + N (N + mp?) r* =
= n? + p*F*® - h? - 2hmp? (py + 91’ + ") — 2mp*F%,

In view of (14) and (18) this relation may be rewritten as

LN — LMYy 4 (MLyy"— MNY'P+(NMy'y — NLyy' P+
+ 758 (MN + NL* 4 LMY =— g (L% + M2 Nog)—
-2 [MN (N — M) ¢y + NL(L — N)y"1y’ -+ LM (M — L) "] —
+ mp* (M — N) 'yt + (N —L) "1y’ + (L — M) 14’y + k1 —
—ZOF B 0?4 P — 2mpPF (1)

Eliminating p, g, r from (19) yields
4 :'F’t’ dE; = 2pF%,t —
e b+ (M —N) Yt + (N —Lyyy +(L—M)'yv1+ (22)

+F[L(M—N)7&'1'+M(N—L)1'r"r+N(L—M)'{"ﬁ]

pF%t

If the sphere is placed on the plane without applying an initial velo-
city, the constants of integration h and n in (4) are zero. In that case,
(22) reduces to

F=2%. o u=gw (23)

We shall determine the constant v. The position of the sphere on the
plane is determined by the coordinates £, n, of the center and the
orientations of the axes Oxyz relative to the plane, i.e. by the Euler
angles. The initial position of the sphere on the plane determines the
initial values of the Euler angles, and consequently the initial values

ay, ay”, ay”, By, By”, By”, vy ¥y~ ¥y~ of all nine direction
cosines,
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Since the sphere is initially at rest,

Po=qo=rg=0 (24)
Substituting (5) and (4), we get

Apo. 4 Bga' + Cra” = 0
ApR + Bqp’ + Crp” = pFt

(25)
Lpy + Mgy’ + Nry" =0
where for brevity we have introduced the notation
A=L+mp® B=M+ mp? C =N+ mpt (26)

Since dtfl /dt=vt, the first expression of (11) gives
o + b +rfr =t @7

Differentiating (25) and (27) with respect to t and setting t = 0, we
get, by (24),

APy + Bag'qy + Cag'ro =0

-43.01)0 4+ Bpol‘.lo + CBo'ro = pF, L‘Tol"o + M ’Tof’]o + N 'fo": 0o =20

p°p° + po'(.lo 1 po"'o = : (28)

The determinant of the first three equations relative to the required
initial values Py» 90 Ty 1s different from zero. Indeed,

Aoy  Bay Cay”
ABy BB, (B,
LTO A[To, N'ro'

+ M CATo' (“o”po —aofy") + N ABTo” (“opo' - “o'ﬁo)

A= = LBCTO (ao,po' - “o'ﬁo') +

But
=o' —a}, ' =oB—af,

7" =of’ —o’B
Therefore,

A = IJBC"'{()g + AJC‘ATOI2 + IVAB'TO,’ =# 0

and
Do = El—f— (CMay" 1y’ — BNoy'ye")
go = pg (ANayyo” — CLay"y,)
fo = 2 (BLayto — Ablast)

Substituting these values into (28), we obtain

y = pf’ [Bo (CMay™te’ — BNay/'1o") + Bo’ (ANwoyo” — CLao™0) +
+ po” (BLao"fo -— AM“OTOI)]
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which on the substitution of (26) finally yields

2R MNB} 4 NTBo'* + LMB,"* 4 mp?(Lvo* + My, 4 Ny,"%)

V=g LBCyof 4 MCAv,? + NABy,"

Hence the center of the sphere moves with uniform acceleration in the
direction of the line of steepest descent, and the acceleration is a
function of the initial orientation, with respect to the plane, of the
principal axes of the central ellipsoid of inertia of the sphere.

Substituting for 61 from (23) into (20) and (21) yields, on the

assumed conditions,
71; (MNY? + NLy* ++ LMY+ mp? (184 % + 1"%) = vF 12
;,1—2 (LNY"Y — LMy'y") + (MLyy” — MNy"p) + (29)
+ (NMy'y — NLyy')?] + '-’gf (MNy't 4 NLy®4 LMv") = p*F (F — mv) 2

We introduce a new independent variable r by the equation

2tdt =d=
Then (29) takes the form

(MO (GE) + VLG )+ 1 () ]+ mer () + () + ()] = or

o [(LNT” o LMy %)z + (ML'r o MNy j,’—:)” + (30)
+ (MM = NLy V] + 5 (M () + ML) + v (5] =
e*F
=" (F — mv)

Equations (30) coincide with equations (18), (19) of Chaplygin's paper
[11, which describe the motion of a sphere on a horizontal plane on the
assumption that the angular momentum is horizontal.

Hence the solution of our problem has been reduced to a problem already
investigated. All the results obtained by Chaplygin in his work for h = 0
can be extended to our problem if the time is replaced by the parameter r.

In particular, it remains to correct the geometric interpretation of
the motion given by Chaplygin in his paper, which consists in the follow-
ing: there are associated with the sphere two quadric surfaces - an
ellipsoid and a hyperboloid. Describe a square about the sphere with one
side of the square tangent to the sphere at its point of contact with the
plane and perpendicular to the line of steepest descent, and with the
side parallel to the first side tangent to the sphere at the diametrically
opposite point. The surfaces associated with the sphere touch the sides
of this square during the motion of the sphere. As distinct from the
problem considered by Chaplygin the square does not move with constant
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velocity in the direction perpendicular to its plane, but with uniform
acceleration v.

In the general case, i.e. forn # 0, h # 0, the problem reduces to
the integration of a system of three ordinary differential equations of
the first order.
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